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Abstract. A theoretical study in the framework of a variational approach is presented for the
Fermi–Pasta–Ulam (FPU) chain interacting with an extra electron. Standing three-component
soliton solutions which describe coupled states of an acoustic polaron with longitudinal
lattice vibrations are found. This result is confirmed by numerical simulations and extended
qualitatively to a chain with a realistic inter-particle potential of a general form.

1. Introduction

The theory of localized modes appearing on impurities in harmonic lattices with structural
disorder is now well developed [1]. In particular, for a one-dimensional lattice with mass
impurity these modes are obtained as small-amplitude oscillations (linearized excitations)
localized around the mass impurity, so their amplitude decreases exponentially from the
impurity centre to infinity. On the other hand, non-linear localized excitations known as
intrinsic localized modes [2–5] can exist even in pure but anharmonic lattices (for a review
see the recent papers [6, 7]). Further, non-linear localized excitations such as static or
moving solitons (topological kinks, polarons etc) with a stationary profile may, to some
extent, also be considered as some type of impurity or defect existing in a pure non-linear
lattice. Therefore one can expect a localized mode to appear coupled to another coherent
structure like a soliton. Recently, localized modes coupled to a discrete topological kink
have been studied, and results have been obtained on their spectral properties and creation
thresholds [8]. Note that in the continuum limit, the theory of linear modes localized on
kinks (domain walls) is now well developed (see the review paper by Jackiw [9]).

Clearly, a similar interest arises in studies of the effects of localization on a non-
topological soliton such as a polaron. Vekhter and Ratner [10, 11] have studied numerically
the dynamics of electronic localization caused by electron–vibrational interaction. They
found a bound electron–breather state. Experimentally, such bound states can be created
when incident electrons collide with a thin film [12]. A similar situation also occurs in
nanoelectronics, namely, in quantum wells or wires [13]. The discovery of tracks in doped
muscovite mica crystals can be understood in terms of breathers interacting with electrons
[14, 15]. Recently, Flach and Kladko [16] studied the interaction of a single electron with a
discrete breather that can be formed in the Fermi–Pasta–Ulam (FPU) chain. Their problem
was formulated as the capture of an electron by a lattice breather without any response of
the electron to the breather. Obviously, the presence of an electron interacting with the
longitudinal lattice displacement will immediately break the breather symmetry (e.g., in the
case of a hard quartic anharmonicity), so a strain (static lattice deformation) component

0953-8984/98/214553+12$19.50c© 1998 IOP Publishing Ltd 4553



4554 Y Zolotaryuk and J C Eilbeck

occurs in the breather solution. On the other hand, as we shall show in this paper, the
appearance of this strain component, i.e., an acoustic polaron, may result in a localization
of lattice oscillations even if such a localization effect would be impossible in a pure lattice
(without any extra electron). In other words, a single electron can dig a potential well in the
lattice not only for itself but also for lattice vibrations, localizing them in a similar manner
to the way in which modes are localized on a topological soliton (kink or antikink).

It should also be pointed out that such an effect of self-trapping of the lattice vibrations
may happen because the potential well represents a localized contractive deformation of the
chain, and hence new equilibria of oscillating chain particles are displaced into the hard
repulsive part of the inter-particle potential. Therefore it is expected that the presence of
an external electron will result in the appearance of a breather-like localized mode, a mode
like that in a pure FPU chain with a hard quartic (symmetric) anharmonicity. This effect is
examined in this paper by using a variational approach in the continuum approximation.

2. The model

We consider a chain of particles (atoms, molecules or groups of atoms) of massM coupled
by anharmonic forces (springs) with a characteristic stiffness constantK. The chain particles
are constrained to move only along the longitudinal direction and they are supposed to
interact with an extra electron. In the adiabatic (semi-classical) limit the Lagrangian function
of such a lattice interacting with an electron (or, in general, a quantum quasi-particle) can
be written in the form

L = L{ψ̇n, ψn; ψ̇∗n , ψ∗n ; Q̇n,Qn}
=
∑
n

[
i h̄ψ∗n ψ̇n − Enψ∗nψn + J (ψ∗nψn+1+ ψ∗n+1ψn)

+ 1

2
MQ̇2

n −Mv2
0U

(
Qn+1−Qn

l

)]
(2.1)

where the dots denote differentiation with respect to timet . The complex-valued lattice
field ψn(t) (coefficient functions of the one-electron state vector) describes the probability
amplitude of finding the electron at thenth lattice site, so it has to be normalized to unity:∑

n

|ψn(t)|2 = 1. (2.2)

The coefficientEn describes the on-site energy of the electron situated at thenth lattice
site and the (positive) constantJ is the exchange (overlapping) integral that describes
the probability of the electron hopping from site to site (i.e., dispersion in the electron
subsystem). The dynamical states of the lattice subsystem are determined by the (real-
valued) lattice fieldQn(t), being the displacement of thenth chain particle from its
equilibrium position. The (dimensionless) inter-particle potentialU(r) is normalized by
the relationsU(0) = 0 andU ′′(0) = 1, so the constantv0 =

√
K/Ml, with l being the

lattice spacing, is the characteristic velocity that describes the speed of small-amplitude
longitudinal sound along the chain. In general, the potentialU(r) can be expanded into a
series:

U(r) =
∞∑
ν=2

κν

ν
rν. (2.3)

For most realistic cases we haveκj > 0 if j is even andκj < 0 if j is odd.
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In general, the on-site electron energyEn depends on the distances between thenth
particle and its nearest neighbours to the left and right. Expanding this dependence into a
power series and keeping only the first-order terms, one can write

En = E0+ χL(Qn −Qn−1)+ χR(Qn+1−Qn) (2.4)

whereE0 is the on-site electron energy when the lattice is undistorted, i.e., the chain particles
are found in their equilibrium positions, andχL > 0 andχR > 0 are the constants of the
interaction of the electron with the left and the right relative displacements,Qn−Qn−1 and
Qn+1 −Qn, respectively. In the present paper, we assume that these constants equal each
other: χL = χR = χ .

The equations of motion that correspond to the Lagrangian (2.1) with the representation
(2.4) are well known (see, e.g., the review paper [17]):

i h̄ψ̇n = −J (ψn−1+ ψn+1)+ χ(Qn+1−Qn−1)ψn

MQ̈n = Mv2
0

l

[
U ′
(
Qn+1−Qn

l

)
− U ′

(
Qn −Qn−1

l

)]
+ χ(|ψn+1|2− |ψn−1|2).

(2.5)

It is convenient to rewrite these equations in the dimensionless form by using the dim-
ensionless time

τ = v0

l
t (2.6)

so that one time unit corresponds to the time interval during of which the (small-amplitude)
sound propagates over one lattice spacing periodl. We also introduce the dimensionless
parameters

α = 2χl

J
β = 2χl

Mv2
0

σ = J l

h̄v0
(2.7)

and rescale the lattice fields by means of the relations

un(τ ) = Qn(t)

l
φn(τ ) = exp

(
−2iJ

h̄
t

)
ψn(t). (2.8)

Then the equations of motion (2.5) are transformed into

(i/σ)
dφn
dτ
= −φn+1+ 2φn − φn−1+ α

2
(un+1− un−1)φn (2.9)

d2un

dτ 2
= U ′(un+1− un)− U ′(un − un−1)+ β

2

(|φn+1|2− |φn−1|2
)

(2.10)

and the normalization condition (2.2) becomes∑
n

|φn(τ)|2 = 1. (2.11)

The main goal of the present paper is to describe approximately the breather-like solutions
of the equations of motion (2.9) and (2.10) with the constraint (2.11).

3. Truncated equations of motion

We look for a spatially localized and periodic breather-like solution in the lattice and denote
it through the functionFn(τ). On the other hand, the presence of an electron should result in
a deformation of the chain which, in its turn, leads to the electron localization. Besides this
self-trapping mechanism, a coupling of the electron to a lattice breather or the appearance
of a localized oscillating mode in the potential well created by the electron self-trapping
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may occur. Therefore, it is reasonable to assume the followingansatzfor a standing spatial
localization:

φn(τ) = ϕn exp(−iεστ) un(τ ) = (−1)nFn cos(�τ)+Gn (3.1)

whereFn is a slow-varying (from site to site) amplitude (envelope) of a breather with
frequency�, Gn is a static part of the chain deformation andε is the energy of the binding
of the electron to the deformation field of the chain. All these variables together with the
second (real-valued) envelopeϕn are determined below using different techniques. The first
of these is to exclude the timeτ by means of the substitution of theansatz(3.1) into the
Lagrangian

L =
∑
n

{
φ∗n

[
(i/σ)

dφn
dτ
+ φn+1− 2φn + φn−1− α

2
(un+1− un−1)φn

]
+ α

β

[
1

2

(
dun
dτ

)2

− U(un+1− un)
]}

(3.2)

which corresponds to the equations of motion (2.9) and (2.10), and then average it over the
period 2π . We introduce the static relative displacement field

Rn = Gn+1−Gn. (3.3)

As a result, we get the average LagrangianL̄ which consists of two parts:

L̄ = L̄el + L̄lat . (3.4)

The first part describes the electron subsystem, including its interaction with the lattice. It
is given by

L̄el = −
∑
n

[
(ϕn+1− ϕn)2+ αRn(ϕ2

n + ϕ2
n+1)/2− εϕ2

n

]
. (3.5)

The second part describes the pure lattice subsystem. Besides the pure breather part, it
also contains the coupling of the breather variableFn with the lattice deformation fieldRn.
Using the expansion (2.3), by induction we derive the following expression:

L̄lat = α

β

∑
n

[
�2F 2

n /4−
∑
j

(2j j !)−2(Fn + Fn+1)
2jU(2j)(Rn)

]
(3.6)

where thej th derivative of the potentialU(r) is denoted byU(j)(r). Here and in what
follows the summation overj runs fromj = 0 to j = ∞.

The equations of motion for the fieldsϕn, Fn andRn which follow from the effective
Lagrangian (3.4)–(3.6) are

ϕn+1− 2ϕn + ϕn−1− (α/2)(Rn−1+ Rn)ϕn + εϕn = 0 (3.7)

�2Fn −
∑
j

4j (2j j !)−2
[
(Fn−1+ Fn)2j−1U(2j)(Rn−1)+ (Fn + Fn+1)

2j−1U(2j)(Rn)
] = 0

(3.8)∑
j

(2j j !)−2(Fn + Fn+1)
2jU(2j+1)(Rn)+ β(ϕ2

n + ϕ2
n+1)/2= 0. (3.9)

These three equations have to be completed by using the normalization condition∑
n

ϕ2
n = 1 (3.10)

rewritten in terms of the amplitudeϕn (see equation (2.11)). The discrete equations (3.7)
and (3.8) are of Schrödinger type, corresponding to a quantum particle in a potential well.
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Thus, the lattice deformation fieldRn in equation (3.7) creates a potential well for the
electron described by the discrete wave functionϕn. The spectral parameterε determines
the binding energy of the electron–lattice interaction. Equation (3.8) has another spectral
parameter, namely�2, and the potential of this Schrödinger-type equation is created by the
derivativeU ′′(Rn), including also higher-order derivativesU(2j) with j > 2. Similarly, the
breather envelopeFn in equation (3.8) is nothing more than a ‘wave function’ subject to the
potential well formed by the derivatives ofU(Rn). Therefore it is reasonable to expect that
this potential well can capture the ‘quasiparticle’ described by the ‘wave function’Fn. On
the other hand, similarly to the self-trapping effect, equation (3.9) describes the influence
of both theϕn- and theFn-fields, acting as external forces, on the deformation fieldRn.
Moreover, one can expect both the electron and the oscillating localized mode with the
envelopeFn to dig a potential well for themselves, forming a self-trapped state. Below we
will try to analyse such behaviour in the continuum approximation by using a variational
approach.

4. The variational approximation

In the continuum approximation the envelopesϕn andFn as well as the deformation (strain)
field Rn are assumed to vary smoothly from site to site. As a result, the average Lagrange
function L̄ given by equations (3.4)–(3.6) is transformed to

L̄ = −
∫ [

(ϕ2
x + αϕ2R)− 1

4
(F 2

x +�2F 2)+
∑
j

(j !)−2F 2jU(2j)(R)

]
dx. (4.1)

The continuum limit of the equations of motion (3.7)–(3.9) can also be obtained immediately
from the Lagrangian (4.1):

δ

δϕ(x)

(
L̄+ ε

∫
ϕ2(x) dx

)
= ϕxx − αRϕ + εϕ = 0 (4.2)

− δ

δF (x)
L̄ = Fxx −�2F +

∑
j

4j (j !)−2F 2j−1U(2j)(R) = 0 (4.3)

− δ

δR(x)
L̄ =

∑
j

(j !)−2F 2jU(2j+1)(R)+ βϕ2 = 0. (4.4)

In order to analyse these equations qualitatively, we use approximations similar to those
suggested by Wattis [18, 19], i.e. the following set of trial functions:

ϕ(x) =
√

µ

a(q)
sechq(µx)

F (x) = F0 sechp(µx) (4.5)

R(x) = R0 sech2(µx)

where the functiona(q) is given by the integral

a(q) =
∫

sech2q(z) dz. (4.6)

This trial ansatzcontains the five variational parametersp, q, µ, F0 and R0. This is a
minimal number of trial parameters. In general, each of the functionsϕ(x), F (x) andR(x)
has its own way of affecting the bell-shaped profile. Therefore, at least three independent
parameters should be involved into the variational procedure. In our case it is convenient
to have only one parameter (µ) in the arguments of the hyperbolic secant functions and the
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two powersp andq which ‘correct’ the decreasing law of the other two profiles (ϕ(x) and
F(x)). Besides these parameters which describe the widths of the profiles, we also need
the corresponding amplitudes. Since the wave functionϕ(x) is normalized via the equation∫
ϕ2(x) dx = 1 which fixes some relation between the width and the amplitude ofϕ(x),

the number of the amplitudes is reduced to the two:F0 andR0.
Substituting the set of trial functions given by equations (4.5) into the Lagrangian (4.1),

we obtain

−L̄(p, q, µ, F0, R0)

= (µ2q + 2αR0)
q

2q + 1
− F

2
0

4

(
p2µ

2p + 1
+ �

2

µ

)
a(p)+ µ−1

∑
j

(j !)−2F
2j
0 Zj

(4.7)

where

Zj = Zj(p,R0) =
∫

sech2jp(z)U(2j)[R0 sech2(z)] dz. (4.8)

The Lagrangian (4.7) contains the functiona(p) given by the integral representation
(4.6). In order to avoid carrying out any operations with this function, we note that the
frequency� is an arbitrary parameter and the variational parameterp should be somehow
related to�. If we know such a relation, then the parameterp could be determined
uniquely by the frequency�. This relation can be found from equation (4.3) in the limit
|x| → ∞ when the non-linear terms can be omitted. As a result, the linearized version of
equation (4.3) becomes

Fxx − (�2− 4)F = 0 (4.9)

and we substitute here the trial functionF(x) from equations (4.5). Then the asymptotics
of this equation at|x| → ∞ yields the relation

�2 = 4+ p2µ2 (4.10)

which can be adopted as a one-to-one correspondence between the parameters� andp at
eachµ to be determined. Therefore we have reduced the total number of the variational
parameters to four:q, µ, F0 andR0. Since the breather frequency may be considered as
a free parameter of the breather solution, we may adoptp in the trial functionF(x) (see
equations (4.5)) as a free parameter. It is important to note that first we should find extrema
of the LagrangianL̄(q, µ, F0, R0) given by expression (4.7), in which the frequency� is
considered as a constant. In the equations for extrema we have to substitute�2 according
to equation (4.10). Similarly, the|x| → ∞ asymptotics of equation (4.2) gives the binding
energy parameterε:

ε = −q2µ2. (4.11)

The equations for determining of the variational parametersq, µ, F0 andR0 follow from
the extrema conditions∂L̄/∂q = 0, ∂L̄/∂µ = 0, ∂L̄/∂F0 = 0, ∂L̄/∂R0 = 0. Excluding�2

from these relations by using equation (4.10), we obtain the following set of four equations:

q(q + 1) = −αR0/µ
2 (4.12)

µ2

[
2q2

2q + 1
µ+ p3a(p)

2(2p + 1)
F 2

0

]
=
∑
j

(j !)−2F
2j
0 Zj − a(p)F 2

0 (4.13)

∑
j

j (j !)−2F
2j−2
0 Zj − a(p) = p2(p + 1)a(p)

2(2p + 1)
µ2 (4.14)
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−
∑
j

(j !)−2F
2j
0 Z

′
j = 2βµq/(2q + 1) (4.15)

where the functiona(p) is defined by the integral (4.6) andZ′j = Z′j (p, R0) = ∂Zj/∂R0.
The set of equations (4.12)–(4.15) has been written in a form appropriate for an

analysis of the existence of solutions. Thus, each of equation (4.12) for determiningq

and equation (4.13) for determination ofµ admit a unique solution because their left-hand
sides are monotonically increasing functions ofq andµ from zero to infinity, respectively,
while their right-hand sides are positive constants (with respect to these parameters). The
left-hand sides of the other two equations (4.14) and (4.15) are also monotonically increasing
functions inF 2

0 andR0, respectively, but they are non-zero atF0 = 0 andR0 = 0. More
precisely, in equation (4.14),Z1 = a(p) + O(R0), so for sufficiently small amplitudesR0

this equation is solvable with respect toF0 and has a unique solution. In equation (4.15)
the term withj = 0, which does not containF 2

0 , increases from zero because it is O(R0)

while in each of the termsZ′j with j > 1 there is a term not involvingR0 but containing

F
2j
0 . Similarly, for sufficiently smallF 2

0 , equation (4.15) is solvable with respect toR0.
Consequently, the capture of the lattice breather by the electron can occur only if both the
amplitudesF0 andR0 are sufficiently small. Below we shall examine the existence of such
solutions in the examples with cubic and hard quartic anharmonicities.

In order to solve equations (4.12)–(4.15), it is convenient to rewrite equation (4.13) in
another form, which does not contain the trial parameterµ. To this end, we substituteµ2

in the first term of its left-hand side from equation (4.12) whileµ2 in the second term of
the left-hand side is substituted for by using equation (4.14). Then, using equation (4.15),
we eliminate the terms containingµ. As a result, we obtain∑

j

(j !)−2F
2j
0

[(
1− j p

p + 1

)
Zj − 1

q + 1
R0Z

′
j

]
= a(p)

p + 1
F 2

0 . (4.16)

Therefore, equations (4.12), (4.14), (4.15) and (4.16) are basic equations for the deter-
mination of the trial parametersq, µ, F0 andR0.

5. Polaron and breather limits

It is important to consider the two limiting cases, namely (i) the case whereF0→ 0, which
means that only the pure polaron solution is present in the system, and (ii) the case where
the electron is absent, for which only the pure FPU breather excitation is considered. For the
first case, equation (4.14) is absent and the remaining equations (4.12), (4.15) and (4.16) are
solvable. To show this, we note thatZj = 0 for all j > 1 and according to equation (2.3)
we have

Z0 =
∞∑
ν=2

a(ν)

ν
κνR

ν
0. (5.1)

Next, from equation (4.16) one can find that

q = R0Z
′
0/Z0− 1 (5.2)

and, substituting this value into equation (4.12), we obtain

µ2 = αZ2
0/(Z0− R0Z

′
0)Z
′
0. (5.3)

Now we solve equations (4.15) and (5.3) and find the equation

4αβ2Z2
0(Z0− R0Z

′
0) = (Z0− 2R0Z

′
0)

2Z′0
3 (5.4)
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for the parameterR0. For any set of the system parametersα andβ, equation (5.4) always
has a unique solutionR0 < 0, and this can be easily concluded if we substitute the series (5.1)
in this equation. Having solved equation (5.4), at least numerically, the other variational
parametersq andµ are found according to equations (5.2) and (5.3), respectively. In the
particular case of the harmonic chain (κν = 0 for all ν > 3), equation (5.4) has the exact
solutionR0 = αβ2/8D and the other equations (5.2) and (5.3) yieldq = 1 andµ = αβ/4.
The trial functionsϕ(x) andR(x) in equations (4.5) with these values give the well-known
solution representing Davydov’s soliton in a molecular chain [17].

Now let us consider the particular case of the potential (2.3) with a hard quartic
anharmonicity. For this case allκν = 0, except thatκ4 > 0, and the stable FPU breather
mode is known to exist [4]. In order to get this case from the general equations, it is
sufficient to putν = 0, R0 = 0 andp = 1 in equations (4.13) and (4.14). Then allZj = 0,
except thatZ1 = 2 andZ2 = 8κ4, and both of these equations are reduced to the relation
µ2 = 6κ4F

2
0 . The trial functionF(x) in equations (4.5) with this value forµ andp = 1 as

well as the relation (4.10) give the exact continuum solution of equation (4.3) which agrees
with that in [2]. Below we shall also consider two particular cases of cubic and quartic
anharmonicities but with the presence of an electron.

6. Cubic and quartic anharmonicities

In the particular case of a cubic anharmonicity the functionsZj are easily calculated to
yield

Z0 = 2

3
R2

0

(
1+ 8

15
κ3R0

)
Z1 = a(p)

(
1+ 4p

2p + 1
κ3R0

)
(6.1)

andZj = 0 for all j > 2. Next, from equation (4.14) we immediately find that

µ2 = 8κ3R0/p(p + 1) (6.2)

so the amplitudeR0 must be negative. Inserting this value into equation (4.12), we find
that the parameterq satisfies a quadratic equation which always has a unique positive root:

q = 1

2

(√
8λ3+ 1− 1

)
(6.3)

with λ3 = −p(p + 1)α/16κ3. Next, equation (4.16) yields the solution for the amplitude
F0:

F 2
0 =

(p + 1)(2p + 1)

6pa(p)(q − p) R0

[
1− q
κ3
+ 8

15
(2− q)R0

]
. (6.4)

Finally, inserting this solution into equation (4.15) and using (6.2), we find that the other
amplitudeR0 satisfies the equation√

2κ3R0

[
p − 1

2κ3
+ 4

15
(p − 2)R0

]
= 6q(q − p)β√

p(p + 1)(q + 1)(2q + 1)
. (6.5)

In the particular casep = 1 this equation is simplified to yield the solution

R0 = 3

[
5(q − 1)qβ

4(q + 1)(2q + 1)

]2/3( 3

κ3

)1/3

. (6.6)

It follows from the last equations that the parameterq must be in the interval 1< q < 2.
Therefore, from the solution (6.3), the system parameters are constrained to satisfy the
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inequalities 1< λ3 < 3. If λ3 is sufficiently close to 1, then the inequalityκ3R0� 1 holds.
On the other hand, in this limit we can find approximately from equation (4.4) that

R ' −(2κ3F
2+ βϕ2) (6.7)

and, inserting this expression into equations (4.2) and (4.3), we find

ϕxx + αβϕ3+ 2ακ3F
2ϕ + εϕ = 0 (6.8)

Fxx − (�2− 4)F − 16κ2
3F

3− 8βκ3ϕ
2F = 0. (6.9)

The approximate equations (6.8) and (6.9) admit the exact soliton solution in the limit
λ3→ 1 (or q → 1) which is defined by the functions (4.5) withµ given by equation (6.2).
Instead of the expression (6.6), in this case we have the equation

R0+ β
√
κ3R0+ 2κ3F

2
0 = 0 (6.10)

with respect toR0 whereF0 appears to be a free parameter. Equation (6.10) has a solution
if F0 is bounded from above, according to the inequalityF0 6 β/2

√
2.

0 50 100 150 200
−1

−0.6

−0.2

0

0.2

n

u n,  
 |φ

n|2

g

2

1

Figure 1. The polaron-breather profile obtained after the integration timeτi = 10 000= 3199T
for the chain with the parametersα = β = 1, σ = 1 andκ3 = −0.125. Curve 1 represents the
lattice displacementsun(τi ) and curve 2 represents the probability distribution|φn(τi )|2 at the
final time τi .

We have checked the analytical solutions obtained above by numerical tests. We
substituted these solutions into the equations of motion (2.9) and (2.10) and integrated
them by using the fourth-order Runge–Kutta method with the time step1τ = 0.01 for a
chain consisting ofN = 200 particles. We chose the parameter valuesα = β = 1, σ = 1
(see their definitions (2.7)) andκ3 = −0.125. We considered wide solutions, in order to
satisfy the continuum approximation. In this case of breather amplitudeF0 = 0.1 we have
µ = 0.19, so the breather is sufficiently wide. The frequency of the breather is� = 2.01 and
the oscillation period is, consequently,T = 2π/� = 3.126. The profile after an integration
time τi = 10 000' 3199T is shown in figure 1. Here the initial condition for the strain part
in equation (3.1) has been used in the conventional kink-shape form (see equations (3.3)
and (4.5)):G(z) = (G0/µ) tanh(µz). The solid line represents the displacement fieldun
while the dashed one describes the probability distribution|φn|2. The form of this localized
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Figure 2. The time dependenceun(τ) for three central particles of the polaron-breather profile:
n = 99, 100 and 101 (curve 1, curve 2 and curve 3, respectively) for the same chain.

solution is essentially unchanged from the initial conditions atτ = 0. The precision of the
integration was checked by monitoring the total energy of the system and the normalization
condition (2.11). The calculations show the conservation of these quantities up to five digits.
The time evolution of the lattice displacements of the three central particles for the numbers
n = 99 (curve 1),n = 100 (curve 2) andn = 101 (curve 3) over several oscillation periods
is plotted in figure 2. The shape of these dependencies is an additional demonstration that
we have obtained a localized periodic solution.

In the case of a narrower breather (α = β = 1.6, σ = 1, κ3 = −0.2, F0 = 0.2), we
observed a similar situation; however, some radiation appears at the edges. Therefore more
discrete solutions are not approximated as accurately by our scheme.

The case with a hard quartic anharmonicity is less interesting from the physical point of
view. Nevertheless, we also consider this case, because it is popular as a typical example
of the existence of intrinsic localized modes [2–7]. For this case we have

Z0 = 2

3
R2

0

(
1+ 12

35
κ4R

2
0

)
Z1 = 2

(
1+ 8

5
κ4R

2
0

)
Z2 = 8κ4 (6.11)

andZj = 0 for all j > 3. Inserting these values into equations (4.14) and (4.16), we find

F 2
0 + 4R2

0/5= µ2/6κ4 (6.12)

F 2
0 + R2

0/7= 5(q − 1)/12(3− q)κ4 (6.13)

respectively. Using equation (6.13), from equation (4.15) we get

R0 = − 3(3− q)q
2(q + 1)(2q + 1)

βµ. (6.14)

Then, using equation (6.14), we find from equation (4.12) the dependenceµ = µ(q):

µ = µ(q) = 3(3− q)
2(q + 1)2(2q + 1)

αβ. (6.15)
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The equation for determination of the parameterq can be found if we solve equations (6.12)
and (6.13) with respect toF0 andR0. As a result, we find the equation

23[3(3− q)]5q2

70(q + 1)2(2q + 1)2
α2β4κ4 = 9(3− q)3α2β2− 10(q − 1)(q + 1)4(2q + 1)2 (6.16)

with respect to the parameterq. It can easily be seen from this equation that it admits a
unique root if the inequality

β2κ4 < 1 (6.17)

holds. Having found this parameter, the other parametersµ, F0 and R0 are calculated
directly according to equations (6.13)–(6.16).

7. Conclusions

In this paper we have investigated the problem of the self-consistent interaction of a single
electron with longitudinal lattice vibrations. Due to the complexity of the breather–electron
interaction, and in order to simplify the analysis as much as possible, we have restricted
ourselves to considering only one (background) harmonic of the breather oscillations.
Instead, the problem is studied in a self-consistent way when the electron response to
the lattice breather is taken into account. Therefore our results are mainly qualitative and
they are valid only for sufficiently wide and low-amplitude oscillations. For such breather-
like excitations we have developed a variational procedure for any realistic potential. A
set of general equations has been obtained which shows the existence of a small-amplitude
wide breather-like excitation in the presence of an electron interacting with the chain. We
have obtained a standing small-amplitude breather in the FPU chain with negative cubic
anharmonicity on the polaron background while it is well known that such a lattice does not
support ‘intrinsic’ breather solutions because inequality (5.15) of [2] (or inequality (3.34)
of [20]) does not hold.

The investigation presented in this paper differs from that of Flach and Kladko [16]
in two respects. First, we consider the electron–lattice interaction in a self-consistent way,
while in the paper [16] the influence of the electron on the breather dynamics was not taken
into account. Second, Flach and Kladko considered highly discrete (localized) breather
solutions. Starting from a given breather solution localized at one lattice site, they found
the profile for the electron wave function. As a result, capture of an electron has been
shown to occur during each half-period of the breather oscillations. We have considered the
‘opposite’ limit in which the lattice oscillations are sufficiently extended that the continuum
approximation can be applied. The presence of an electron in the chain causes a static
lattice deformation which creates a potential well, not only for the electron, but also for the
lattice vibrations. This localizes the two effects and forms a breather-like state. Note that
this coupled state can appear only in the case in which the chain contains an anharmonicity.
Moreover, the existence of a pure lattice breather is not a necessary condition for the
formation of such coupled breather-like states; the latter can exist even in the case in which
pure lattice breathers cannot be created, e.g., in the FPU chain with cubic anharmonicity.

Of course, the variational procedure developed in this paper is rather crude because
higher-order lattice-vibration harmonics were not included in theansatz(3.1). Also, the
electron probability distribution in thisansatzwas taken to be averaged in the region
of the breather excitation. For narrow breathers we should improve theansatz (3.1),
taking into account its ‘fine’ structure. Finally, the present theory could be extended to
the case of moving excitations and Wattis’s approximation techniques would be useful for
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such investigations. These problems are now being studied and results will be published
elsewhere.
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